
 

 

 

 

 

 

 

 

 

 

Multi-City, National Scale Direct-Demand Models of  

Peak-Period Bicycle and Pedestrian Traffic 

 

Date: May 2017 

 

Huyen Le, PhD Student, Virginia Tech 

Ralph Buehler, PhD, Associate Professor, Virginia Tech 

Steve Hankey, PhD, Assistant Professor, Virginia Tech 

 

 

Prepared by: 

School of Public and International Affairs, Virginia Tech 

140 Otey St., Blacksburg, VA 24061 

1021 Prince St., Alexandria, VA 22314 

 

Prepared for: 

Virginia Center for Transportation Innovation and Research  

530 Edgemont Road  

Charlottesville, VA 22903 

FINAL REPORT 



1. Report No. 
 

 

2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 

 
Multi-City, National-Scale Direct-Demand Models of Peak-Period 
Bicycle and Pedestrian Traffic 

5. Report Date 
 

May 2017 

6. Performing Organization Code 

7. Author(s) 

Huyen Le, Ralph Buehler, Steve Hankey 
8. Performing Organization Report No. 

  

9. Performing Organization Name and Address 
 

School of Public and International Affairs, Virginia Tech 
140 Otey St., Blacksburg, VA 24061 
1021 Prince St., Alexandria, VA 22314 

10. Work Unit No. (TRAIS 

11. Contract or Grant No.   

 DTRT13-G-UTC33 

12. Sponsoring Agency Name and Address 

US Department of Transportation 
Office of the Secretary-Research 
UTC Program, RDT-30 
1200 New Jersey Ave., SE 
Washington, DC 20590 

13. Type of Report and Period Covered 
 

 Final     6/1/16 – 5/31/17 

14. Sponsoring Agency Code 
 

15. Supplementary Notes 

16. Abstract 
 

Direct-demand models are potentially useful tools for generating spatial estimates of pedestrian and bicycle traffic 
volumes to help plan for active transport facilities and target infrastructure investments. To date, most direct-
demand models are city-specific; lack of spatial and temporal coverage of traffic counts on a national scale has 
precluded generalizability and transferability of city-specific models. 

This project aims to address this limitation by sourcing peak-period non-motorized traffic counts at 6,342 locations 
across 20 U.S. metropolitan statistical areas (MSAs) to estimate spatial patterns of bicycle and pedestrian traffic. 
We developed models to estimate bicycle and pedestrians traffic at intersections and segments during two-hour 
morning and afternoon peak periods. Our models have reasonable goodness of fit for both bicycle traffic (adjusted 
R2: 0.19 to 0.56) and pedestrian traffic (adjusted R2: 0.45 to 0.72). We found a number of land-use and network 
variables that were correlated with bicycle and pedestrian traffic, for example, multimodal network density, 
presence of water bodies, nearby offices, industrial area, zero-car households, as well as bicycle and walking 
commuting mode shares. Intersection density is also a strong predictor for pedestrian volume; off-street and on-
street bicycle facilities are strong predictors of bicycle volume.  

Our count data have good spatial and temporal coverage across a variety of cities and regions in the US. 
Estimating models across cities allows for estimating non-motorized traffic in cities where counts are inadequate 
or unavailable with higher reliability. Our models could be used to inform decisions on where to locate non-
motorized transportation facilities and to assess exposure to accidents with motor vehicles or other environmental 
hazards.  

17. Key Words 

 
Non-motorized transportation, direct-demand model, bicycle and 
pedestrian counts, active travel, built environment 
  

18. Distribution Statement 
 

No restrictions. This document is available 
from the National Technical Information 
Service, Springfield, VA 22161 

19. Security Classif. (of this 
report) 
 

Unclassified 

20. Security Classif. (of this 
page) 
 

Unclassified 

21. No. of Pages 
 

28 

22. Price 



ii 
 

Acknowledgement 

The authors would like to thank the Transportation Research and Education Center at 

Portland State University for their effort cleaning data from the National Bicycle and Pedestrian 

Documentation Project. We also thank Bryce Johnson, student in the Master of Urban and 

Regional Planning program at Virginia Tech, for his assistance in this project.  

 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 

facts and the accuracy of the information presented herein. This document is disseminated 

under the sponsorship of the U.S. Department of Transportation’s University Transportation 

Centers Program, in the interest of information exchange. The U.S. Government assumes no 

liability for the contents or use thereof.  



iii 
 

Executive Summary 

 Many cities in the U.S. have stated goals to increase walking and bicycling to improve 

public health, reduce emissions, and increase livability. Quantifying the relationship between 

the built environment on walking and bicycling levels can help plan for active transport facilities 

and target infrastructure investments. Direct-demand models are potentially useful tools for 

generating spatial estimates of pedestrian and cyclist traffic volumes to inform these decisions.  

To date, most studies have used city-specific traffic counts to build city-level direct-

demand models. However, lack of spatial and temporal coverage of traffic counts on a national 

scale have precluded generalizability from these models. This limitation underscores the need 

for development of multi-city, national-scale direct-demand models of bicycle and pedestrian 

traffic in the continental US.  

This project aims to address this limitation by sourcing peak-period non-motorized 

traffic counts at 6,342 locations across 20 U.S. metropolitan statistical areas (MSAs) to estimate 

the spatial patterns of bicycle and pedestrian traffic. The count locations were geocoded and 

surrounding land-use types and transportation network features were tabulated as potential 

predictor variables. Based on the count data (i.e., dependent variables) and land-use variables 

(i.e., independent variables) we developed direct-demand models to estimate spatial patterns of 

bicycle and pedestrian traffic across the 20 MSAs.  

We developed (1) base case models (including all data from 20 MSAs) and (2) alternative 

models for spatially concentrated count locations (including data from MSAs that have 100 

locations or more) to predict bicycle and pedestrians traffic at intersections and segments 

during two-hour morning and afternoon peak periods. Bicycle facility (i.e., bicycle lane or off-

street trail) data were not available across all cities. We developed an additional set of models 

for bicycle traffic for the nine MSAs where bicycle facility data to assess the impact of bicycle 

infrastructure.  

Our models demonstrate reasonable goodness of fit for both bicycle traffic (adjusted R2: 

0.19 to 0.56) and pedestrian traffic (adjusted R2: 0.45 to 0.72). We found a number of land-use 

and network variables that were correlated with bicycle and pedestrian traffic, such as 

multimodal network density, presence of water, nearby offices, industry, and zero-car 

households, as well as greater bicycle and walking commuting mode shares. Intersection density 

is also a strong predictor for pedestrian volume, while off-street and on-street bicycle facilities 

are strong predictors of bicycle volume. Despite data and modeling limitations, our models 

produced robust outcomes, which were validated using a cross validation and sub-sampling 

method (i.e., modeling a subset of MSAs with spatially dense traffic count locations). However, 

some variables showed mixed results (positive and negative effects among models) including 
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household density, types of housing units, retail, and service land use. This indicates that 

practitioners should be cautious when using these land use types as predictors for bicycle and 

pedestrian traffic. 

A strength of our approach is that our count data have good spatial and temporal 

coverage across a variety of cities and regions in the US. The coverage of the count data 

combined with the use of predictor variables that are available at the national-scale allows for 

estimating non-motorized traffic in cities where counts are inadequate or unavailable (a 

limitation of previous work). Our models could be used to inform decisions on where to locate 

non-motorized transportation facilities and to assess exposure to accidents with motor vehicles 

or other environmental hazards.  
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Problem Statement 

 Many cities in the U.S. have stated goals to increase walking and bicycling to improve 

public health, reduce emissions, and increase livability (Hankey et al., 2016; Jackson et al., 

2013). Providing generalizable information about the effect of the built environment on walking 

and bicycling levels may help cities plan for active transport facilities and target infrastructure 

investments to improve walkability and bikeability. Direct-demand models, a statistical tool that 

allows modelers to predict traffic volume based on land-use and transportation network 

attributes, are potentially useful tools for generating spatial estimates of pedestrian and cyclist 

traffic volumes to inform these decisions.  

To date, most studies have used city-specific traffic counts to assess correlates of active 

travel and the built environment (Hankey & Lindsey, 2016; Tabeshian & Kattan, 2014; Miranda-

Moreno & Fernandes, 2011). However, lack of spatial and temporal coverage of pedestrian and 

bicycling traffic counts on a national scale have precluded generalizability from these city-level 

studies. To the best of our knowledge, no study has utilized pedestrian and bicycle count data 

across multiple metropolitan areas to develop direct-demand models and predict non-motorized 

traffic at locations without counts.  

The lack of generalizability among previous city-specific models underscores the need for 

development of multi-city, national-scale direct-demand models of bicycle and pedestrian traffic 

in the continental US. These statistical models could be used to identify potential locations of 

future bicycle and pedestrian facilities or to develop estimates of crash rates. They could also be 

used to estimate non-motorized traffic volumes in cities where there are few counts or counts 

are unavailable.  

Approach 

 Our work aims to address this research gap by developing a set of direct-demand models 

to estimate non-motorized traffic using bicycle and pedestrian traffic counts (i.e., dependent 

variable) based on land use, transportation network, and temporal data (i.e., independent 

variables). The overall workflow is shown in Figure 1; detailed descriptions of each task are in 

the main body of the report.  

Task 1: Non-motorized traffic count aggregation 

For 20 US metropolitan statistical areas (MSAs) we sourced and aggregated pedestrian 

and bicycle traffic counts that were collected over a span of 15 years. The count data were 

obtained from the National Bicycle and Pedestrian Documentation Project (NBPDP) database or 

requested directly from each MSA. We selected and aggregated counts during morning and 

afternoon peak periods (two hours each) since those two time periods represent the most 
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frequently counted hours-of-day. Although we collected counts across seasons, we focused 

mainly on fall counts since that was the most common season data were collected in the MSAs in 

our database, which resulted in 9,870 observations for bicycle counts and 7,644 observations for 

pedestrian counts. 

Task 2: Tabulating independent variables 

For each count location, we tabulated surrounding land use, traffic, street network, 

destination accessibility, and socio-demographic variables at 12 buffer sizes (100-3,000m). 

Weather data were also included as control variables. We sourced this data from nationally 

available sources including: American Community Survey (ACS), Smart Location Database 

(SLD), and the National Oceanic and Atmospheric Administration (NOAA). 

Task 3: Developing base-case direct-demand models 

We used forward stepwise linear regression models to develop four base-case models for 

morning and afternoon peak-period bicycle and pedestrian traffic volumes. Independent 

variables were selected from the database created in Task 2 based on statistical inclusion criteria 

described below (see Methodology).  

Task 4: Developing alternative models 

 We developed two alternative models that may inform efforts to improve direct-demand 

modeling in the future: 

Alternative model 1 – Bicycle facility data:  We developed direct-demand models of 

bicycle traffic using a subset of cities where bicycle facility data are available. Then, we 

compared the model results to the base-case models that did not include bicycle facilities as an 

independent variable.  

Alternate model 2 – Spatially concentrated traffic counts: We developed alternate 

models that include only cities with a large number of traffic counts (i.e., >100 count locations). 

We compared model performance for models that use spatially concentrated traffic count data 

as compared to the base-case models.  
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Figure 1. Workflow for the database management and modeling approach. 

Methodology 

Our work employs stepwise linear regression to develop direct-demand models of bicycle 

and pedestrian traffic based on neighborhood-level (i.e., Census block group) land use, 

transportation network, and socio-demographic characteristics. This section describes methods 

used for collecting, processing, and modeling the bicycle and pedestrian traffic count data.  

Data Sources 

Data used in this study were collected from various sources (Table 1). We acquired 

bicycle and pedestrian count data from the National Bicycle and Pedestrian Documentation 

Project database and by contacting individual local agencies to obtain updated counts for 

subsequent years. Other data, such as land-use and transportation network characteristics, were 

collected from the ACS 5-year summary, EPA’s SLD, and TIGER. All data are publicly available 

at the national level. We also collected weather variables, such as temperature and precipitation, 

from the NOAA website, which is also publicly available at the national level. Bicycle facility data 

were obtained from Google Earth imagery with historical view, which allows us to track the 

changes in facility types over time.  

1. Traffic count data 

aggregation 

• Inputs: NBPDP, 

local agencies.

• Outputs: Two-hour, 

peak period count 

data of 20 U.S. 

metropolitan areas. 

2. Tabulating 

independent variables

• Inputs: TIGER, 

SLD, ACS, NOAA.

• Outputs: land use, 

transportation 

network 

characteristics, 

weather, etc. for 

use as predictor 

variables. 

3. Base-case Direct-

Demand Models

• Inputs: Outputs 

from Tasks 1 and 

2.

• Outputs: First 

direct-demand 

models of bicycle 

and pedestrian 

traffic at the 

national-scale. 

4. Alternative model 

specifications

• Inputs: Outputs 

from Tasks 1, 2, 

and 3.

• Outputs: 

• Alternative 1: 

Bicycle facility 

data.

• Alternative 2: 

Spatially dense 

traffic counts.
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Figure 2. Map of metropolitan areas with available bicycle or pedestrian count data. 
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Table 1. Data description 

Type of Data Source Unit of 

measurement 

Areal unit of 

base data 

Tabulation 

method 

Year 

Bicycle and pedestrian traffic counts NBPDP; Local 

agencies 

AM/PM peak-hour Point - 2000-2016 

Land use data      

Industrial ACS/SLD Job Block group Buffer 2010 

Service ACS/SLD Job Block group Buffer 2010 

Retail ACS/SLD Job Block group Buffer 2010 

Office ACS/SLD Job Block group Buffer 2010 

Water TIGER shapefile Square meter Polyline Buffer 2014 

Housing unit  ACS/SLD Unit Block group Buffer 2010 

Number of households ACS/SLD Household Block group Buffer 2010 

Transportation-related data      

Number of zero-vehicle households ACS/SLD Household Block group Buffer 2010 

Bicycle commute mode share ACS Percent Block group Buffer 2014 

Walking commute mode share ACS Percent Block group Buffer 2014 

Public transport commute mode share ACS Percent Block group Buffer 2014 

Number of public transit stops SLD/GTFS Stop Point Buffer 2010 

Total road network density SLD Miles/sq mile Block group Buffer 2010 
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Type of Data Source Unit of 

measurement 

Areal unit of 

base data 

Tabulation 

method 

Year 

Network density in terms of facility miles of 

multi-modal links per square mile1 

SLD Miles/sq mile Block group Buffer 2010 

Street intersection density (weighted, auto-

oriented intersections eliminated)2 

SLD Intersections/sq 

mile 

Block group Buffer 2010 

Bicycle facility Google Earth Type Point estimate Point  

Socioeconomics      

Median household income ACS US dollar Block group Buffer 2014 

Population below 18 years of age ACS Percent Block group Buffer 2014 

Population from 18 to 45 years of age ACS Percent Block group Buffer 2014 

Population from 46 to 65 years of age ACS Percent Block group Buffer 2014 

Population above 65 years old ACS Percent Block group Buffer 2014 

Weather data 

Precipitation 

Temperature 

NOAA  

Inch  

Degree Fahrenheit  

  2000-2016 

                                                        
1 For a full description of these data, please see the SLD User’s Guide (2014, pp.20-23) at https://www.epa.gov/sites/production/files/2014-
03/documents/sld_userguide.pdf  
2 Ibid. 

https://www.epa.gov/sites/production/files/2014-03/documents/sld_userguide.pdf
https://www.epa.gov/sites/production/files/2014-03/documents/sld_userguide.pdf
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Data Processing 

A core task in this project was to assemble a national-scale database of bicycle and 

pedestrian traffic counts and to assemble corresponding land-use and transportation network 

variables. Below we describe our method for data cleaning and aggregation as well as give 

descriptive statistics of the database. 

Count Data 

We obtained traffic count data from each jurisdiction and from the NBPDP database. It 

is noteworthy that the count data used in this study is not exhaustive; that is, more count data 

might be available for each MSA, however, they were not available when we requested.  

Count data were obtained in two different formats, depending on their availability for 

each jurisdiction: (1) raw count data or (2) aggregated count data. Raw count data are typically 

recorded in 15-minute intervals. Aggregated count data are the total traffic counts at each 

location in two hour peak periods. Most count campaigns focus on morning (7-9AM) and/or 

afternoon (4-6PM or 5-7PM) peak-periods on weekdays, and the lunch hour (11AM-1PM) peak-

period on weekends; however, counts were also collected to a lesser degree during other times of 

day in a number of metropolitan areas. For the purpose of building our models, we focused on 

weekday, morning and afternoon peak-period counts. We aggregated all 15-minute counts into 

two-hour counts to allow for comparison across geographies.  

When counts were reported for unidirectional flows we converted to bidirectional counts 

at each location by adding unidirectional counts at the same segments. Our dataset includes 

counts at street segments (i.e., screenline counts) and intersections. We separated the two types 

of count locations due to their different nature and thus difference in absolute volumes. For 

intersection counts with turning movements, we separated the counts into segment counts for 

each leg for use in the segment models.  

Finally, we aggregated counts by season (focusing on the fall because fall counts are the 

most abundant cross jurisdictions). Specifically, we took the average of all counts at the same 

location, in the same peak period, in the same year, for each season (Figure 3). Since the 

participating MSAs are in different geographic regions, we generally grouped counts conducted 

in August to November as fall counts. The final counts were then normalized by log-

transforming for modeling. The zero values of counts were dropped as log of zero is undefined, 

although the zero values only account for 2.9% of the total number of observations in our 

dataset. In this report, we only use count data collected in fall to simplify the model building 

process.  
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Figure 3. Data processing workflow 

 

Table 2 provides the number of count observations in the fall season by peak period. In 

total, 9,870 observations were collected for bicycle traffic, of which, afternoon peak counts 

account for 64% of the sample. Pedestrian traffic counts totaled 7,644 observations; 60% 

represent afternoon peak periods. Most MSAs collected traffic counts during the afternoon peak; 

about half of the MSAs did not count bicyclists and pedestrians during morning peak hours. 

Traffic counts collected at intersections account for 47% and 49% of the total sample for bicycle 

and pedestrian traffic, respectively.  

 

 

 

 

 

 

Unidirectional 
Raw Count 

Data
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Bidirectional 
Raw Count 
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•Sum into bidirectional counts
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Two-hour 
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Table 2. Bicycle and pedestrian counts by peak period and location type (fall counts only) 

 Bicycle Pedestrian 

Metropolitan Area 

AM PM AM PM 

Intersctn Segment Intersctn Segment Intersctn Segment Intersctn Segment 

Blacksburg, VA 
 

101 
 

101 
 

72 
 

72 

Boston, MA 4 39 4 41 4 8 1 8 

Champaign Urbana, IL 66 255 66 255 121 
 

121 
 

Cleveland, OH 
   

82 
   

81 

Columbus, OH 7 213 
 

         7 213 
 

         

Denver, CO 48 
 

74          
   

         

Hartford, CT 3 1 61 11 3 1 61 11 

Lawrence, KS 
   

100 
   

100 

Los Angeles, CA 462 520 461 428     

Madison, WI 91 73 144 73 0 73 0 73 

Manhattan, KS 
  

112          
  

112          

Minneapolis, MN 
   

950 
   

950 

New York City, NY 
     

1,022 
 

1,022 

Philadelphia, PA 
 

198 
 

190 
 

158 
 

162 

Portland, OR 
  

36 55 
  

36 55 

San Francisco, CA 
  

308 1,241 
  

79 1 

Seattle, WA 303 
 

305          305 
 

305          

St Louis, MO 
  

142          
  

238          

Tucson, AZ 1,058 
 

1,060          1,075 
 

1,074          

Washington, DC 10 54 10 54 10 
 

10 
 

Total 2,052 1,454 2,783 3,581 1,525 1,547 2,037 2,535 

 

Table 3 and Table 4 show bicycle and pedestrian counts by year, respectively. Most 

jurisdictions conducted counts during the 2010-2016 period. Bicycle traffic was counted 

repeatedly at 3,141 locations (i.e., each location were counted at least twice within 15 years), or 

was measured once at 1,650 locations during the study period from 2001 to 2016.  Similarly,    

pedestrian traffic was counted repeatedly at 1,717 locations, and counted once at 1, 274 locations 

in 15 years. 
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Table 3. Bicycle counts by year 

Bicycle 
      

 Year 
     

     

Metropolitan Area 2001 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Blacksburg, VA 
      

 
     

202      

Boston, MA 8 2 34 
  

29 20 39 16 50 31 12 9      

Champaign Urbana, IL 
      

 
  

620 
   

40 

Cleveland, OH 
      

 
 

24 40 45 24 
 

     

Columbus, OH 
  

39 17 33 28 43 77 38 43 34 35 38 32 

Denver, CO 
    

22 
 

 2 7 4 10 37 59      

Hartford, CT 
      

 
     

28 48 

Lawrence, KS 
      

 
  

17 26 20 22 24 

Los Angeles, CA 
     

56 32 221 525 171 415 141 347 162 

Madison, WI 
 

12 12 12 12 12 12 98 60 48 157 119 74 18 

Manhattan, KS 
      

 
    

26 24 62 

Minneapolis, MN 
    

51 78 153 84 131 142 144 167 
 

     

New York City, NY 
    

48 
 

 
      

     

Philadelphia, PA 
      

136 136 197 22 41 73 235 120 

Portland, OR 
     

39 52 52 
     

     

San Francisco, CA 
   

150 133 146 150 146 197 
 

244 388 
 

     

Seattle, WA 
      

 608 
     

     

St Louis, MO 
      

 
  

33 32 40 37      

Tucson, AZ 
     

106 188 180 194 149 272 506 525 4 

Washington, DC 
     

74 74 106 100 115 140 96 228 46 
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Table 4. Pedestrian counts by year 

Pedestrian 
      

Year 
     

      

Metropolitan Area 2001 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Blacksburg, VA 
           

144       

Boston, MA 4 18 
  

4 3 7 4 9 8 7 3       

Champaign Urbana, IL 
      

10 18 170 4 6 18 16 

Cleveland, OH 
       

23 40 45 24 
 

      

Columbus, OH 
 

39 17 33 28 43 77 38 43 34 35 38 32 

Hartford, CT 
           

28 48 

Lawrence, KS 
        

17 26 20 22 24 

Madison, WI 
      

66 28 
 

44 42 14 18 

Manhattan, KS 
          

26 24 62 

Minneapolis, MN 
   

51 78 153 84 131 142 144 167 
 

      

New York City, NY 
   

476 450 454 456 456 456 456 456 456 228 

Philadelphia, PA 
      

100 237 28 37 65 51 118 

Portland, OR 
    

39 52 
      

      

San Francisco, CA 
          

80 
 

      

Seattle, WA 
      

608 
   

1 1       

St Louis, MO 
        

39 50 66 83       

Tucson, AZ 
 

8 78 
   

173 190 513 274 504 499 4 

Washington, DC 
        

4 36 
 

32 10 
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Land-Use and Transportation Network Data 

 For each count location, we tabulated land-use and transportation network data using 

the Land Use Regression (LUR) tools (Akita, 2014) for ArcGIS. This set of tools allows us to 

measure areas of polygons, number of points, or distance of lines that fall inside a buffer. Using 

LUR tools, we measured the area of each land-use type, weighted average income, percentage of 

population by age group (and other socio-economic characteristics), and other variables listed in 

Table 1 at 12 different buffer sizes: 100m, 200m, 300m, 400m, 500m, 750m, 1000m, 1250m, 

1500m, 2000m, 2500m, and 3000m. The sizes of the buffers were chosen based on a similar 

study by Hankey & Lindsey (2016).  

Weather Data  

We obtained weather data from NOAA for each count date and each city. We assigned 

the lowest temperature of each day for morning peak counts, and the highest temperature of 

each day for afternoon peak counts. Only daily average precipitation was used for each count 

location, regardless of peak periods. We then aggregated temperature and precipitation data by 

season along with the count data.  

 

Analysis 

Once the data were cleaned and aggregated, we developed a set of direct-demand models 

for bicycle and pedestrian traffic during morning and afternoon peak periods. We applied the 

forward stepwise regression approach to select the variables most correlated with active travel 

among a set of possibly relevant variables listed in the previous section. This method has been 

applied in previous studies (Hankey & Lindsey, 2016).  

 We modeled bicycle and pedestrian traffic (dependent variable) using land use, 

transportation network, weather, and socio-demographic variables as predictors (independent 

variables). The choice of independent variables was based on the existing literature (Jones et al., 

2010; Miranda-Moreno & Fernandes, 2011; Schneider et al., 2011; Tabeshian & Kattan, 2014; 

Fagnant & Kockelman, 2016; Hankey & Lindsey, 2016) and professional judgement. Each 

variable was measured at 12 buffer sizes and included for selection in the model building 

process. However, each variable was only allowed to be selected once among all buffer sizes.  

We used forward stepwise linear regression to select statistically meaningful variables for 

the final models. Specifically, the independent variable with the highest correlation with the 

dependent variable (log of bicycle and pedestrian count) was selected first. The process 

continues by searching for the independent variable with the highest correlation with the model 

residuals. To avoid multicollinearity, our procedure did not select variables that are highly 

correlated with one of the previously chosen independent variables (using a check for Variance 
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Inflation Factor). The process continued until the last coefficient of the independent variable 

included in the model was statistically insignificant (at 0.05 level) or violated criteria for 

multicollinearity; this variable was then removed and the model was completed.  Descriptive 

statistics of the dependent and independent variables are provided in Table 5 and Table 6.  

Table 5. Descriptive statistics for number of pedestrians and bicyclists counted (not log-transformed) 

MSA   

Bicycle Pedestrian 

AM PM AM PM 

  Intersctn Segment Intersctn Segment Intersctn Segment Intersctn Segment 

Blacksburg, VA Mean  6.8  10.2  33.5  65.0 

 SD  8.9  13.9  48.5  132.3 

  Median   4   5   20   23.5 

Boston, MA Mean 21.0 639.0 128.0 591.0 37.9 319.7 726.5 186.7 

 SD 33.6 954.8 223.4 945.2 57.0 413.2  327.1 

  Median 6 192 18 181.5 14 210 726.5 57.5 

Champaign 
Urbana, IL 

Mean 20.6 10.5 68.2 35.0 82.3 
 

185.4          

 SD 27.3 15.9 31.6 21.9 126.0  280.3          

  Median 11 4 70.5 31 30   62          

Cleveland, OH Mean    26.9    84.6 

 SD    28.1    103.63 

  Median       14       49.5 

Columbus, OH Mean 2.6 25.0           63.6 150.9           

 SD 2.5 35.7           75.0 189.9           

  Median 3 12            12 63            

Denver, CO Mean 42.1  70.5                      

 SD 38.5  52.7              

  Median 29   60                  

Hartford, CT Mean 6.3 25.0 17.8 19.3 90.3 116.0 86.8 50.9 

 SD 5.1  17.3 16.5 70.1  139.4 59.2 

  Median 5 25 13 15 122 116 36 19 

Lawrence, KS Mean    17.4    47.9 

 SD    17.3    95.6 

  Median       12       16 

Los Angeles, CA Mean 45.3 41.9 56.3 69.8             

 SD 43.9 56.3 61.8 85.8     

  Median 35 24 42 43         

Madison, WI Mean 163.9 110.7 224.8 139.7  58.2  96.1 

 SD 168.7 96.9 253.3 121.2  37.5  80.6 

  Median 87 97 127 104   51   68 

Manhattan, KS Mean   20.4            87.3          

 SD   23.5            136.4          

  Median     12              23          
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MSA   

Bicycle Pedestrian 

AM PM AM PM 

  Intersctn Segment Intersctn Segment Intersctn Segment Intersctn Segment 

Minneapolis, MN Mean    108.9    149.4 

 SD    140.0    279.4 

  Median       58       68 

New York City, 
NY 

Mean 
   

         
 

2127.4 
 

3812.3 

 SD       2389.4  3860.4 

  Median           1259   2688 

Philadelphia, PA Mean  27.0  37.4  268.7  472.5 

 SD  53.5  59.4  399.2  687.7 

  Median   9   21   99   179 

Portland, OR Mean   46.2 176.8   61.1 112.0 

 SD   42.2 246.2   47.0 160.4 

  Median     30 53     47.5 57 

San Francisco, CA Mean   304.6 149.9   1639.8 9773.0 

 SD   320.3 216.9   1908.7          

  Median     179 61     907 9773 

Seattle, WA Mean 37.1  38.4          72.9  88.2          

 SD 78.4  78.3          123.1  187.5          

  Median 11   13          36   42          

St Louis, MO Mean   25.12            69.4          

 SD   35.95            115.4          

  Median     13              29          

Tucson, AZ Mean 52.7  54.1          64.7  84.9          

 SD 88.4  95.8          135.3  221.7          

  Median 25   24          20   21          

Washington , DC Mean 80.0 76.1 55.1 68.8 7.9  2.7          

 SD 72.7 108.7 71.9 106.3 20.1  8.2          

  Median 82 48 32 30 0   0          

Total Mean 52.2 50.2 86.4 108.5 67.3 1459.7 149.5 1639.4 

 SD 85.7 191.3 165.1 197.1 131.4 2159.6 518.7 3049.6 

  Median 26 15 31 44 24 597 31 181 
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Table 6. Descriptive statistics of independent variables 

 100m buffer size 1000m buffer size 3000m buffer size 

Variable Mean Median SD Mean Median SD Mean Median SD 

Total jobs 35093 5812 91444 22030 3215 59484 122798 37192 243977 

Retail jobs 30 3 97 2041 460 5295 9784 3309 18258 

Office jobs 139 4 522 12304 581 38833 42833 5893 93649 

Households 89 37 132 8723 4174 10452 63147 29409 72320 

Housing units 100 41 150 9724 4567 11912 69799 32322 81080 

Zero-car households 32 17 39 3189 2000 2953 23495 14115 20532 

Industry jobs 50 3 454 3159 478 8943 16340 5429 28199 

Entertainment jobs 62 6 263 3956 638 11055 17100 4688 34899 

Service jobs 178 18 514 13655 2817 31872 65307 27401 109553 

Median household income 58068 50926 36571 58221 54294 29169 59044 54054 24521 

Transit mode share 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Bicycle mode share 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Walking mode share 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

Below 18 years old 14.2 13.5 9.5 14.9 14.4 7.9 16.2 15.4 5.5 

18 to 45 years old 50.3 46.1 20.5 48.2 45.3 16.1 43.8 42.6 11.5 

46 to 65 years old 21.5 22.5 9.8 22.0 23.0 7.1 22.3 22.3 5.2 

Above 65 years old 14.0 11.1 14.1 14.9 12.2 10.7 17.7 13.9 11.1 

# of transit stops 1.2 0.0 1.9 55.8 37.0 60.7 382.8 272.0 390.0 

Water 1034 0 4331 148768 1594 328392 2529278 561853 4004732 

Total road network density 24.4 23.4 10.7 24.3 23.2 11.1 24.2 21.9 14.7 

Intersection density 123.2 103.0 90.8 119.1 104.4 68.1 105.1 96.2 50.0 

Multimodal network density 4.1 3.2 3.8 3.6 3.2 2.4 3.1 3.0 1.4 

Temperature (no buffer) 70.5 70.0 12.3 
      

Precipitation (no buffer) 0.3 0.0 1.2 
      

Note: Three illustrative buffer sizes of small, medium, and large buffers from the count locations. Variables were tabulated for other buffer sizes and were not described in this table. 
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Findings 

Results 

 We developed three sets of direct-demand models: full models (with all count data from 

the 20 metropolitan areas), bicycle facility models (with nine metropolitan areas where bicycle 

facility data are available), and spatially concentrated models (with jurisdictions that have 100 

or more count locations for each mode).  

 

Full Models 

 We first developed models that included (1) all MSAs listed in our database and (2) all 

nationally available variables as candidates for selection. All models except one (the bicycle AM 

segment model) show relatively good fit, with adjusted R2s ranging from 0.38 – 0.56 for bicycle 

traffic, and 0.45 to 0.72 for pedestrian traffic. Given the low model fit, we do not recommend 

using the bicycle AM segment model until further work has been completed to improve the 

model. The full models are shown in Table 8; coefficients are shown in each cell, with the buffer 

size selected in the model building process in parentheses. Since the dependent variables 

(bicycle and pedestrian counts) were log-transformed, the coefficients are interpreted as 

percentage change in traffic volume.  

Variables describing characteristics of the transportation network entered all models. 

Multimodal network density, measured as miles of streets that accommodate various modes of 

transport per square mile, was a strong positive predictor for bicycle traffic, with a stronger 

relationship to traffic volume at segments as compared to intersections (17 – 40% at segment 

count locations versus 4-9% at intersections), holding other variables constant. However, 

multimodal network density is negatively correlated with pedestrian traffic in the segment count 

models, indicating that higher multimodal network density is associated with a lower pedestrian 

volume. A similar effect on pedestrian traffic is found for total road network density. Further, 

higher intersection density has a positive association with pedestrian volume. An increase of one 

intersection per square mile is associated with a 0.6-0.8% increase in pedestrian traffic. The 

mixed findings for pedestrian traffic volumes may indicate confounding effects among different 

measures of network density. 

Land-use features entered most models. For example, areas of water bodies within 100 

meter to one kilometer buffers of the count locations has a strong positive association with 

bicycle traffic (one hectare of water is associated with 8-70% more bicycle traffic), and a mixed, 

modest effect on pedestrian traffic (i.e., decrease 0.4% or increase up to 0.8% of pedestrian 

traffic). Office land use has a negative association with bicycle traffic, and a strong positive 
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relationship with pedestrian traffic. Industrial area generally has a positive relationship with 

both bicycle and pedestrian traffic in six of the eight models. Retail and service show mixed 

associations with walking and cycling. A higher number of households within a buffer is 

correlated with higher non-motorized traffic across the models. In general, the direction of effect 

from these variables are similar to findings from other studies, although the magnitudes of effect 

are different (Hankey & Lindsey, 2016).  

Our models also show that neighborhoods with more bicycle and walking commute 

mode share are associated with higher bicycle traffic counts. In contrast, neighborhoods with 

high public transit commuting mode share and high density of bus stops generally have lower 

non-motorized traffic. Similar to the relationships for various measures of network density this 

could signal confounding effects among these variables, for example, areas with higher levels of 

transit service could also be areas with high rates of walking and bicycling. 

Rain, temperature, and socio-demographic variables (e.g., age and income) were 

included in the models as control variables. The sign of coefficients for these variables changed 

across models and would benefit from further refinement in future iterations of the models.  

Table 7. List of MSAs that have traffic count data used in the full models 

 AM Peak PM Peak 

 Segment Intersection Segment Intersection 

Bicycle Models Blacksburg 

 Boston 

Champaign 

Urbana 

Columbus 

Hartford 

Los Angeles 

Madison 

Philadelphia 

Tucson  

Washington, DC 

Boston 

Champaign 

Urbana 

Columbus 

Hartford 

Los Angeles 

Madison 

Seattle 

Tucson 

Washington, DC 

Blacksburg 

Boston 

Champaign 

Urbana 

Cleveland 

Hartford 

Lawrence 

Los Angeles 

Madison 

Minneapolis 

Philadelphia 

Portland 

San Francisco 

Tucson 

Washington, DC 

Boston 

Champaign 

Urbana 

Denver 

Hartford 

Lawrence 

Los Angeles 

Madison 

Manhattan 

Portland 

San Francisco 

Seattle 

St Louis 

Tucson 

Washington, DC 
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 AM Peak PM Peak 

 Segment Intersection Segment Intersection 

 

Pedestrian Models Blacksburg 

Boston 

Columbus 

Hartford 

Madison 

New York City 

Philadelphia 

Tucson 

Boston 

Champaign – 

Urbana 

Columbus 

Hartford 

Seattle 

Tucson 

Washington, DC 

Blacksburg 

Boston 

Cleveland 

Hartford 

Lawrence 

Madison 

Minneapolis 

New York City 

Philadelphia 

Portland 

San Francisco 

Tucson 

Boston 

Champaign – 

Urbana 

Hartford 

Lawrence 

Manhattan 

Portland 

San Francisco 

Seattle 

St Louis 

Tucson 

Washington, DC 
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Table 8. Full direct-demand models of bicycle and pedestrian traffic in 20 MSAs 

Full models (Fall) 

Bicycle Pedestrian 

AM PM AM PM 

Segment Intersection Segment Intersection Segment Intersection Segment Intersection 

Multimodal network density 
0.402 

(3000) 
0.039  
(500) 

0.166 
(2000) 

0.087  
(750) 

-0.130 
(3000) 

0.192  
(1500) 

-0.104 
(3000) 

0.080  
(100) 

Total network density 
   

0.015 
(1500) 

-0.004 
(2000) 

 

-0.006 
(1500) 

 

Intersection density 
    

0.006 
(750) 

0.006  
(750) 

0.006 
(500) 

0.0089 
(1500) 

Water (hectare) 
 

0.697  
(100) 

0.141 
(200) 

0.076  
(300) 

0.005 
(750) 

-0.004 
(1000) 

0.030 
(400) 

0.006  
(750) 

Office (thousand) 
 

-0.146  
(300) 

 

-0.674 
(100) 

0.250 
(100) 

2.068  
(100) 

0.255 
(100) 

2.361  
(100) 

Industry (thousand) 
 

0.016  
(3000) 

0.127 
(300) 

0.565  
(200) 

0.028 
(750) 

-0.041 
(1500) 

0.020 
(750) 

-0.462 
(300) 

Retail (thousand) 
 

-0.048 
(2500) 

-0.709 
(100) 

0.032 
(3000) 

   

0.133  
(750) 

Service 
  

0.005 
(3000) 

  

-0.00001 
(3000) 

0.253 
(100) 

-0.021 
(1500) 

Entertainment (thousand) 
   

-0.233  
(300) 

   

Housing Unit 
 

-0.002  
(100) 

      

Zero-car household (thousand) 
   

0.0021 
(100) 

1.365 
(300) 

0.333 
(1000) 

0.039 
(3000) 

0.222 
(1000) 

Household (thousand) 
 

0.022  
(3000) 

  

0.006 
(3000) 

-1.683  
(200) 

0.643 
(200) 

 

Bicycle mode share 
 

16.475 
(3000) 

12.171 
(1000) 

13.578 
(3000) 

 -4.523 
(200) 
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Full models (Fall) 

Bicycle Pedestrian 

AM PM AM PM 

Segment Intersection Segment Intersection Segment Intersection Segment Intersection 

Walking mode share 
 

1.776  
(100) 

2.17  
(1000) 

1.474  
(500) 

4.260 
(100) 

4.133  
(200) 

2.881 
(100) 

3.932  
(400) 

Transit mode share 
 

-2.483 
(3000) 

-4.539 
(2000) 

-4.409 
(3000) 

-7.123 
(3000) 

-2.080 
(3000) 

-10.192 
(3000) 

-5.799 
(3000) 

Transit stops 
 

-0.001 
(2500) 

-0.003 
(1500) 

0.042  
(100) 

-0.003 
(3000) 

0.088  
(100) 

-0.002 
(3000) 

0.087  
(100) 

Precipitation 
 

0.112 -0.064 0.124 
  

0.106 
 

Temperature 
    

0.004 0.013 
 

-0.006 

Income (thousand dollars) 
0.008 

(3000) 
0.008  

(2500) 
-0.004 

(750) 
0.005 

(3000) 
-0.019 
(2500) 

 

-0.013 
(3000) 

-0.004 
(100) 

Under 18 years old 
 

-0.024 
(3000) 

-0.016 
(100) 

-0.026 
(3000) 

-0.029 
(1250) 

 

0.015 
(100) 

-0.014 
(1000) 

18-45 years old 
 

-0.018 
(3000) 

 

0.009 
(300) 

0.012 
(2000) 

 

0.009 
(100) 

 

45-65 years old 
 

-0.013  
(750) 

0.019 
(3000) 

 

0.052 
(1500) 

  

-0.022 
(1000) 

Above 65 years old 
  

-0.021 
(750) 

 

-0.012 
(200) 

 

0.015 
(2500) 

-0.011 
(300) 

Number of MSAs 10 10 14 14 8 7 12 11 

N 1348 1902 3271 2604 1471 1149 2525 1600 

Adj-R2 0.19 0.43 0.38 0.56 0.66 0.45 0.72 0.58 

Note: Buffer sizes are shown in parentheses. All dependent variables were log-transformed. All variables were significant at 0.05 level.  
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 To validate and test the robustness of the models, we performed cross validation by 

employing a Monte Carlo-based hold-out analysis. Briefly, we randomly separated the dataset 

into two parts: a training set (containing a random selection of 90% of the original sample) to 

build the models, and a test set (containing the remaining 10% of the original sample) to 

validate the results of the training models. The process was repeated 100 times, resulting in 

eight sets of 100 training models each (for bicycle/pedestrian AM/PM peak at 

segment/intersection). The average adjusted R2 from the training models were similar to the 

values displayed in Table 8. The training models were used to estimate traffic counts at locations 

in the test dataset and compare differences in estimates vs. actual counts; in general, the 

validation results were robust with only modest changes in adjusted R2 of 0.01 to 0.04. Common 

variables selected in the training models were similar to the variables displayed in Table 8. This 

indicates that our model has reasonable out-of-sample prediction, and that the above selected 

variables are the most statistically significant factors in our dataset to consider when modeling 

bicycle and pedestrian traffic (other important variables may exist that we did not include in our 

dataset). However, we lacked a true external validation dataset to more rigorously test our 

models. Future work could use systematic hold out procedures of specific MSAs to test model 

performance. 

 

Alternative Models with Bicycle Facility Data 

 In order to account for the impact of bicycle facilities on bicycle traffic, we developed 

another set of models that included bicycle facilities as an independent variable. At the time of 

writing this report, only nine MSAs in our sample had such data: Columbus, OH, Blacksburg, 

VA, San Francisco, CA, Madison, WI, Los Angeles, CA, Minneapolis, MN, Philadelphia, PA, 

Cleveland, OH, and Lawrence, KS. Count data from these areas were collected at street segments 

only (i.e., these models do not include intersection counts).  

 Bicycle facilities were categorized as follows: on-street facilities include sharrows (shared 

lane markings), bike lanes, buffered bike lanes, protected bike lanes, and bike boulevards; off-

street facilities include trails and shared use paths that are completely separated from vehicular 

traffic. When none of the above bicycle facilities are present, the street segment is coded as no 

facility. Since network data on bicycle facilities was not available, our approach (see above) 

included assessing whether bicycle facilities existed based on Google Earth imagery. As such, 

on-street and off-street facility types are introduced in the models as dummy variables.  

 Two models shown in Table 9 perform fairly well in predicting bicycle traffic (Adjusted 

R2 = 0.46 – 0.51). Bicycle facility variables were strong predictors of bicycle volume, which 

aligns with findings from previous studies using bicycle traffic counts (Hankey & Lindsey, 2016) 

and bicycle commuting mode share (Buehler & Pucher, 2012; Buehler & Dill, 2016). Compared 
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to a street segment without a facility, having an on-street bicycle facility is associated with a 43.8 

to 54.2% increase in bicycle traffic, while having an off-street bicycle facility is associated with a 

77.3 to 95.9% increase in bicycle traffic. The presence of entertainment venues, water bodies, 

zero-car households, and high bicycle commuting mode share are positively associated with 

higher bicycle volume.  

 Weather and socio-demographic variables were included as control variables. Some of 

these variables exhibit mixed effects (positive and negative) on bicycle traffic. In general, the 

result from this alternative set of models is similar to findings from the full models.  

 

Table 9. Alternative models including bicycle facility as a predictor 

Facility Models  

(Bicycle, Fall, Segment) AM Peak PM Peak 

Multimodal NW Density 0.520 (3000) 0.057 (500) 

Off-Street Bike Facility 0.773 0.959 

On-Street Bike Facility 0.438 0.542 

Temperature -0.011 0.012 

Precipitation 
 

-0.219 

Entertainment 0.003 (100) 
 

Water (hectare)  0.147 (200) 0.131 (200) 

Zero-car household (thousand) 0.125 (750) 
 

Bicycle Mode share 18.015 (1250) 10.077 (1000) 

Transit Mode share -2.875 (400) 
 

Transit Stops -0.002 (3000) 
 

Below 18 years old 
 

-0.014 (100) 

45-65 years old -0.026 (100) 
 

Above 65 years old -0.017 (750) -0.034 (1000) 

Income (thousand dollars) 0.004 (3000) -0.005 (1250) 

N 878 2,980 

Adj-R2 0.51 0.46 

MSAs included Blacksburg, Los 

Angeles, Madison, 

Philadelphia 

Blacksburg, Cleveland, Columbus, 

Lawrence, Los Angeles, Madison, 

Minneapolis, Philadelphia, San 

Francisco       

Note: Buffer sizes are shown in parentheses. All dependent variables were log-transformed. All 

variables were significant at 0.05 level.  
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Alternative Models with Spatially Concentrated Count Locations 

 To explore whether the number of count locations within a jurisdiction impacted model 

performance, we developed another set of alternative models for jurisdictions that have 100 or 

more count locations. A list of MSAs included in these models is shown in Table 10; regression 

results are shown in Table 11.  

 

Table 10. List of MSAs with high number of count locations 

 
AM Peak PM Peak 

 
Segment Intersection Segment Intersection 

Bicycle 

Models 

Blacksburg (101) Los Angeles (462) Blacksburg (101) Los Angeles (461) 

Champaign – Urbana 
(255) 

Seattle (303) 
Champaign – Urbana 
(255) 

Madison (144) 

Columbus (213) Tucson (1,058) Lawrence (100) Manhattan (112) 

Los Angeles (520)  Los Angeles (428) Seattle (305) 

Philadelphia (198)  Minneapolis (950) San Francisco (308) 

  Philadelphia (190) St Louis (142) 

  San Francisco (1,241) Tucson (1,060) 

    

Pedestrian 

Models 

Columbus (213) 
Champaign – 
Urbana (121) 

Lawrence (100) 
Champaign – Urbana 
(121) 

New York City (1,022) Seattle (305) Minneapolis (950) Manhattan (112) 

Philadelphia (158) Tucson (1,075) New York City (1,022) Seattle (305) 

  Philadelphia (162) St Louis (238) 

   Tucson (1,074) 

Note: The number of observations (i.e., traffic counts) for each city are displayed in 

parentheses.  

  

Adjusted-R2 and the variables that entered the spatially dense models are similar to 

those of the full models presented above. In general, for the land-use and transportation 

variables, the sign and magnitude of the coefficients are similar, except for retail (direction of 

effect reversed) and households (substantial change in magnitude). As such, the models are 

robust for this sensitivity analysis and analysts may be more confident in use of these models for 

estimating traffic volumes at locations without counts in regions throughout the country. 

However, the marginally significant effects of household and retail variables should be 

interpreted with caution. 
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Table 11. Models to predict bicycle and pedestrian traffic in areas with spatially dense count locations 

Spatially Dense Models 

Bicycle Pedestrian 

AM PM AM PM 

Segment Intersection Segment Intersection Segment Intersection Segment Intersection 

Multimodal network density 
0.472 

(3000) 
 

0.022 
(100) 

0.213 
(2500) 

-0.062 
(1000) 

0.181 
(2000) 

-0.078 
(3000) 0.063 (100) 

Total network density 
  

0.032 
(2000) 

0.011 
(1500) 

  

-0.010 
(2000) 

 

Intersection density 
    

0.021 
(3000) 0.006 (750) 

-0.009 
(3000) 

0.010 
(1250) 

Water (hectare) 
0.970  
(100) 

0.802  
(100) 

0.169 
(200) 

0.216  
(200) 

0.017  
(500) 

-0.003 
(1000) 

0.008 
(1000) 0.007 (750) 

Office (thousand) 
 

-0.419 
(300) 

  

0.024  
(300) 1.907 (100) 

0.361  
(100) 

2.855  
(100) 

Industry (thousand) 
  

0.034 
(2000) 

0.043 
(1500) 

0.030  
(500) 

-0.029 
(3000) 

0.040 
(200) -0.132 (750) 

Retail (thousand) 
  

-1.018 
(100) 

    

0.086 
(3000) 

Service (thousand) 
 

0.077  
(750) 

0.0017 
(750) 

    

-0.036 
(1500) 

Entertainment (thousand) 
      

-0.185 
(100) 

1.041  
(300) 

Housing Unit 
    

0.047 
(1000) 

  
0.151 (1000) 

Zero-car household (thousand) 
  

0.037 
(1000) 

  

0.239 
(1000) 

0.002 
(200) 

 

Household  (thousand) 
 

0.014 
(3000) 

   

-1.409 
(200) 

0.042 
(1250) 

 

Bicycle mode share 
6.371 

(1000) 
15.995 

(3000) 
8.601  
(750) 

11.142 
(3000) 
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Spatially Dense Models 

Bicycle Pedestrian 

AM PM AM PM 

Segment Intersection Segment Intersection Segment Intersection Segment Intersection 

Walking mode share 
    

4.305  
(100) 3.784 (200) 

3.829  
(100) 4.239 (400) 

Transit mode share 
  

-2.980 
(2000) 

-4.562 
(3000) 

-5.388 
(3000) 

-3.520 
(3000) 

-13.282 
(3000) 

-4.705 
(3000) 

Transit stops 
  

-0.003 
(1500) 

 

-0.003 
(3000) 0.120 (100) 

0.039 
(200) 

0.077  
(100) 

Precipitation 
  

-0.076 0.192 
    

Temperature 
   

0.01 
 

0.013 0.01 
 

Income  (thousand dollars) 
 

0.008 
(2500) 

-0.004 
(750) 

0.007 
(3000) 

-0.014 
(2500) 

-0.004 
(100) 

-0.020 
(3000) 

-0.003 
(100) 

Under 18 years old 
  

-0.017 
(100) 

-0.036 
(3000) 

  

0.019  
(100) 

 

18-45 years old 
  

0.005 
(100) 

0.017  
(200) 

  

0.012  
(100) 

 

45-65 years old 
    

0.030  
(300) 

 

0.011  
(100) 

-0.021 
(1000) 

Above 65 years old 
 

0.012 
(3000) 

-0.029 
(1250) 

   

0.017 
(2000) 

-0.008 
(100) 

Number of MSAs 5 3 7 7 3 3 4 5 

N 1,185 1,760 2,963 2,433 1,377 1,133 2,209 1,533 

Adj-R2 0.29 0.39 0.38 0.57 0.6 0.46 0.71 0.54 

Note: Buffer sizes are shown in parentheses. All dependent variables were log-transformed. All variables were significant at 0.05 level.  
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Strengths and Limitations 

 Our study has several limitations pertaining to data availability and modeling methods. 

In terms of data, some predictors of bicycle and pedestrian traffic, as shown in previous 

literature, such as slope, vehicular traffic (AADT), speed limit, park and open space, etc. were 

unavailable and thus were not included in the model. In the future, we will refine the models by 

including some of these variables as they become available. A general challenge when 

developing national-scale models is that refined land-use data vary across jurisdictions; future 

efforts to develop more specific land-use patterns in a consistent format across the country 

would benefit the type of modeling described here. Similarly, methods for counting bicycles and 

pedestrians vary across the country; work to make bicycle and pedestrian traffic counts more 

consistent across jurisdictions would be useful for spatial modeling. 

With regards to modeling methods, we have not yet accounted for temporal and spatial 

dependence (e.g., autocorrelation). For example, count locations that are close in proximity to 

each other may exhibit spatial autocorrelation. Similarly, locations where counts were collected 

multiple times over the years could potentially exhibit temporal dependence when modeling 

counts at these locations. We aim to address these issues in future work.  

Despite these limitations, our work adds to the growing body of work on direct-demand 

modeling in several ways. A key contribution of our work is the development of models that do 

not rely on data from a single city. Previous direct-demand models were not able to transfer to 

other jurisdictions making their usefulness limited for practitioners outside of the study area. 

Our models rely on count data from 20 MSAs across the country and therefore may be better 

suited for estimating traffic patterns in locations with few or no bicycle and pedestrian counts. 

Expanding on our work (and addressing some of the limitations above) would allow for more 

reliable models that could be applied across the country. 

Conclusions and Recommendations 

This study examined the relationship between the built environment and non-motorized 

traffic volumes in 20 US Metropolitan Statistical Areas. Our models showed reasonable 

goodness of fit for both bicycle traffic (adjusted R2: 0.19 – 0.56) and pedestrian traffic (adjusted 

R2: 0.45 – 0.72). We found a number of land-use and network variables that were correlated 

with bicycle and pedestrian traffic, such as multimodal network density, presence of water 

bodies, offices, industry, zero-car household, as well as bicycle and walking commuting mode 

shares. Intersection density is also a strong predictor for pedestrian volume, while off-street and 

on-street bicycle facilities are strong predictors of bicycle volume. Despite data and modeling 

limitations, our models produced robust outcomes, which were validated using a cross 

validation and sub-sampling method (i.e., modeling a subset of MSAs with spatially dense traffic 



27 
 

count locations). However, some mixed results (variables with positive and negative coefficients 

across models) for household density, housing unit, retail, and service land use indicate that 

practitioners should be cautious when using these land use types as predictors for bicycle and 

pedestrian traffic.  

A strength of our approach is that our count data have good spatial and temporal 

coverage across a variety of cities and regions in the US (most previous studies rely on single-

city models). The coverage of the count data combined with the use of predictor variables that 

are available at a national-scale allows for estimating non-motorized traffic in cities where 

counts are inadequate or unavailable (a limitation of previous work). Our models could be used 

to inform decisions on where to locate non-motorized transportation facilities and to assess 

exposure to accidents with motor vehicles or other environmental hazards. 
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